By Kathiann Kowalski for Inside Climate News.
Broadcast version by Farah Siddiqi for Ohio News Connection reporting for the Solutions Journalism Network-Public News Service Collaboration
Lake Erie's harmful algal blooms have started sooner and had longer peak periods over the past decade compared to earlier years, newly released data shows. Warming temperatures linked to climate change are a cause, according to researchers for NOAA's National Centers for Coastal Ocean Science, with interactions among species likely playing a role as well.
The NOAA scientists discussed the shift and forecast a moderate to above-moderate algal bloom for the lake's western basin this summer during a briefing last month at Ohio State University and Ohio Sea Grant's Stone Laboratory, off the coast of Put-in-Bay on Lake Erie.
Algal blooms occur when cyanobacteria, or blue-green algae, grow out of control due to a combination of excess nutrients, weather patterns and other ecological factors. The blooms can be a serious public health problem because some types of cyanobacteria produce toxins. Microcystin, for example, can lead to skin rashes, gut problems and liver and kidney issues. Relatively high levels of it in August 2014 prompted a two-day shutdown of Toledo's public water supply, which comes from Lake Erie.
"We were certainly caught off guard, and the impact was hundreds of thousands of people were without drinking water," said Sean Corson, director of the National Centers for Coastal Ocean Science. The total economic impact of the 2014 water crisis was around $65 million, he said.
Even when toxic strains aren't the problem, algal blooms can still affect Ohio's lake-focused businesses and other activities. Aside from the ugliness of neon green scum, people can't distinguish between toxic and non-toxic strains by eye. Such uncertainty discourages lake-based activities, such as beach visits and fishing. Blooms also add to costs for water treatment plants.
Out-of-control cyanobacteria don't provide good eating for the rest of the lake's food web, either. And they contribute to so-called dead zones, areas with very low levels of dissolved oxygen that can't support aquatic life.
For more than a decade, NOAA has worked with partners in the state, including the Ohio Sea Grant Program, the National Center for Water Quality Research at Heidelberg University, the Ohio State University and the University of Toledo, to forecast the severity of the blooms in Lake Erie's western basin. It's the shallowest part of the lake, with abundant fish. Water is likely to warm faster and blooms flourish there more readily than elsewhere in the lake. Water in Lake Erie generally moves from west to east.
Last year's bloom was significantly larger than the smaller-than-average event researchers had predicted. So the forecast team took a closer look at the data.
From 2012 through 2023, Lake Erie's algal blooms have generally started in July, compared to the previous decade when blooms usually kicked in during August, said NOAA oceanographer Rick Stumpf, who plays a leading role in the forecasting program. The lake's algal blooms during the past decade also have had longer peak periods, resembling plateaus instead of short spikes.
"Blooms are starting earlier. They're lasting longer. Their peaks are larger. So, by some measures, they're getting worse," Corson said.
"Temperature is the overall driver," Stumpf said, noting ongoing trends of warmer summers and less ice cover in winters. But it's not a simple matter of warmer water producing the changes. The team's current hypothesis is that the shift to earlier algae blooms with longer peak periods reflects both climate change and ecological interactions.
Diatoms are a type of single-cell algae found in Lake Erie, which play an important part in its food webs. They generally outcompete cyanobacteria for nutrients early in the season, when water is cooler, Stumpf explained. The diatoms provide good eating for tiny lake organisms called zooplankton. Changing conditions in the lake could be increasing the degree to which the zooplankton multiply and feast on the diatoms, perhaps suppressing their populations sooner than in earlier years. By the time that happens, cyanobacteria, which prefer warmer water anyway, may have a clearer path to use extra nutrients in the water and grow out of control.
Research is ongoing to better understand what's been happening, Stumpf said. It could help fine-tune future forecasts. But climate change is definitely a factor in the mix.
"We know that climate is changing. We know that this is happening in states here in the Great Lakes region," Corson said. Changes in Ohio include a trend toward warmer average temperatures and more intense rainfall that usually increases stormwater runoff.
When soil can't absorb that runoff, it carries nutrients from fertilizers into waterways, along with other pollution. Fertilizer runoff from farms is a major source of both phosphorus and nitrogen, although some amounts also come from places like golf courses and suburban subdivisions.
Researchers are seeing shifts in algal bloom patterns elsewhere in the United States. But "changes are really specific to the individual area where you are," Corson said. Many coastal areas are experiencing warming trends and changes in precipitation patterns, along with shifts in land use that increase the amount of impervious surfaces. "Those are all occurring, and the shapes of the blooms are changing as well," he said.
The Outlook This Summer
The severity of Lake Erie's algal blooms varies from year to year. Factors include the levels of nutrient loading from the Maumee River basin, which covers a large part of northwestern Ohio, along with smaller areas in Indiana and Michigan.
The basin accounts for nearly half of the total phosphorus going into Lake Erie's western basin each year, according to Laura Johnson, who heads the National Center for Water Quality Research. She and others are especially interested in the amount of bioavailable phosphorus reaching the lake's western basin each year. Bioavailable means the phosphorus is in a form algae can use.
Estimates for that loading each spring come from flow data and chemical analyses of samples pulled at stream monitoring equipment in Waterville, which accounts for roughly 96 percent of the watershed. More than 60 percent of the area's total bioavailable phosphorus loading from March 1 through June 23 happened in April, Johnson said.
That month was the wettest on record for the region, and more rainfall generally means more fertilizer runoff. However, it was also a mild winter. Relatively dry soils could absorb a fair amount of the runoff, which prevented "crazy flash floods," Johnson said. Some phosphorus remains in the lake from prior years' discharges.
Stumpf and his team fed information from Johnson's group and other data into three models to estimate how severe this year's algal bloom will be on a scale from 1 to 10. "Three models give you a better chance of bracketing the right result," Stumpf explained.
This year's work also reflects a tweak to account for the changing pattern of earlier starts and longer peaks for Lake Erie's algal blooms. "Now we're training those models on data from 2013 to 2023," Stumpf said. The more current data should improve the models' results.
For this year, NOAA predicted a Level 5 bloom, with a range of 4.5 to 6. Fortunately, Corson said, technology continues to improve ongoing monitoring of algal blooms. Water treatment plants' technology has improved as well, he noted.
"The bloom isn't all over the lake all the time," Stumpf stressed. Wind patterns and other factors determine which areas are affected at any particular time. Checking NOAA's updated forecasts can help for planning recreational activities.
"That's going to show you where the bloom is going," said Chris Winslow, director of Ohio Sea Grant and Ohio State University's Stone Laboratory. The Ohio Department of Health's BeachGuard webpage also reports sampling results for cyanobacteria toxins and E. coli bacteria.
Researchers also advise common sense. If the water appears green and scummy, "keep yourself, your kids and your pets out of the water," Stumpf said. Not all algal blooms have high levels of the toxin-producing strains, but it's not worth taking chances.
Kathiann Kowalski wrote this article for Inside Climate News.
get more stories like this via email
New Mexico farmers finding it more difficult to grow historic crops are taking up conservation techniques to meet the challenge.
Drought, water scarcity, and extreme weather events combine to require growers to adopt new methods and modern tools.
John Idowu, extension agronomist specialist at New Mexico State University, shows farmers how to improve soil health and help control wind erosion. For long term success, he said they need to focus on sustainable, regenerative practices.
"How can I optimize my system and make it more resilient to climate change, to weather changes?" Idowu explained. "Once we have all those things worked out, farmers will tend to stay in business for longer."
Earlier this year, a NOAA satellite captured an image of winds lifting vast amounts of dust and dirt from New Mexico's dry farmlands. Some forecasters compared it to images last seen in the 1930s Dust Bowl.
Plowing agricultural fields annually was a common practice until the Dust Bowl period but in recent decades no-till or low-till farming operations have gained traction.
Bonnie Hopkins Byers, program director for the San Juan County Extension Service, encouraged New Mexico farmers to get a soil analysis and consider adopting the less aggressive approach. She said it could mean they do not need to till every year.
"One of the biggest problems is that people do something because that's the way they've always done it, or because it's the way their parents have done it, or their grandparents," Hopkins Byers acknowledged. "My philosophy has always been if you're going to till something over, till something in."
Intense dust storms known as "haboobs" were originally thought to be confined to Africa's Sudan but are becoming more common in other arid regions such as the Southwest.
Idowu stressed it makes the adoption of regenerative practices more urgent, as topsoil on New Mexico farmland disappears due to drought, land use changes and wind, which he noted has been particularly strong this year.
"The wind has been a major force, especially in the spring, so many days where you couldn't do anything outside because of the wind," Idowu observed. "You have a lot of dust and that means a lot of erosion and that is exactly what you don't like when it comes to crop production."
The New Mexico Healthy Soil Working Group formed to help farmers improve their land and livelihoods.
get more stories like this via email
By Carolyn Beans for Lancaster Farming.
Broadcast version by Mark Richardson for Keystone State News Connection reporting for the Lancaster Farming-MIT Climate Change Engagement Program-Public News Service Collaboration
At Mountain View Holsteins in Bethel, Pennsylvania, owner Jeremy Martin is always working to make his dairy more efficient.
Currently, he has his sights set on a manure solid-liquid separator. He'd like to use the solid portion of his manure as bedding for his 140 cows and the liquid as fertilizer.
But the project is pricey - he expects the equipment alone will run around $100,000. So Martin hopes to defray the cost through grant funding for dairy projects that reduce greenhouse gas emissions. Removing much of the solids from manure reduces the feed for the methane-producing microbes that thrive in the anaerobic conditions of liquid manure.
The approach is just one of many dairy practices now considered "climate-smart" because they could cut production of climate-warming gases.
For Martin, a manure separator wouldn't be possible without a grant.
"Once it's in place and going, I think some of these practices will pay for themselves, but the upfront cost is more than I can justify," he says. "If there's money out there to pay that upfront cost to get started, it makes sense to me to do it."
Across Pennsylvania, dairy farmers are learning more about climate-smart practices and funding opportunities, and weighing whether these changes are really sustainable for their businesses as well as the environment.
The Latest Buzzword
USDA has defined climate-smart agriculture as an approach that reduces or removes greenhouse gas emissions, builds resilience to the changing climate, and sustainably increases incomes and agricultural productivity.
"Before climate-smart was a thing, we called it conservation. We called it stewardship," says Jackie Klippenstein, a senior vice president at Dairy Farmers of America.
Indeed, long before the Food and Agriculture Organization of the United Nations coined the term "climate-smart agriculture" in 2010, Pennsylvania dairy farmers had adopted many of the practices that now fall under the label.
For dairy, climate-smart practices largely include strategies that reduce greenhouse gases emitted from cows, manure or fields. Tried and true conservation practices like cover cropping and reduced tillage count.
So do newer practices like using the feed additive Bovaer to reduce methane production in a cow's rumen, or precision nitrogen management to reduce nitrous oxide emissions from fields.
Paying for Climate-Smart
"Margins are very tight on the dairy farm," says Jayne Sebright, the executive director of the Center for Dairy Excellence, a public-private partnership to strengthen Pennsylvania's dairy industry. "Some of these (climate-smart practices) are good for the climate, but they don't make good economic sense until they're subsidized."
In 2022, the center joined a Penn State-run program called "Climate-smart Agriculture that is profitable, Regenerative, Actionable and Trustworthy" to provide dairy farmers with funds for switching to climate-smart practices.
CARAT was launched with a $25 million USDA Partnerships for Climate-Smart Commodities grant, but the future of the Pennsylvania project is in doubt. In April, USDA canceled the partnership program, suggesting that recipients reapply to a new USDA initiative called Advancing Markets for Producers.
Over 60 dairy farmers across Pennsylvania, including Martin, had already applied and been accepted into the first phase of CARAT. This initial phase was intended to help farmers identify the best climate-smart practices for their operations. In the second phase, farmers would have applied for funding to implement those practices. One farmer was already paid for his project before the USDA canceled the partnership program.
"There are fewer funding sources for climate-smart projects than in the last administration. However, private organizations and other entities are funding climate-smart projects," Sebright says. "Depending on what the practice is, (climate-smart) could also be conservation projects. It could be water quality projects."
Sebright suggests that dairy farmers also look for support through state-level funding, such as Pennsylvania's Resource Enhancement and Protection program, which offers tax credits for implementing practices that benefit farms and protect water quality.
Pennsylvania dairy farmers can also contact their county conservation districts to ask about funding opportunities for climate-smart projects, says Amy Welker, a project manager and grant writer for Pennsylvania-based Jones Harvesting, which operates Maystone Dairy in Newville and Molly Pitcher Milk in Shippensburg.
In the next year, Jones Harvesting plans to install a methane digester and solid-liquid separator at a site near Maystone Dairy. The digester is funded with an Agricultural Innovation Grant from the state and an Environmental Quality Incentives Program grant from USDA, along with private funds.
There's money out there for farmers who implement climate-smart practices, says Welker. But "you can't just look at one source."
Long-Term Payoffs
Ultimately, for climate-smart projects to make economic sense, they must continue paying for themselves long after the initial investment. One major goal of the USDA's Partnerships for Climate-Smart Commodities program was to develop markets where farmers adopting these practices could earn a premium.
Some dairy farmers might see that return in the carbon market. National checkoff organization Dairy Management Inc. and its partners have pledged to shrink the industry's net greenhouse gas production to zero by 2050. There are growing opportunities for companies working toward that goal in the dairy supply chain to pay farmers for their contributions.
Early last year, Texas dairy farmer Jasper DeVos became the first to earn credits through the livestock carbon insetting marketplace. DeVos earned carbon credits by reducing methane emissions with a feed protocol that included the feed additive Rumensin. Dairy Farmers of America then purchased those credits through Athian, a carbon marketplace for the livestock industry.
Increased Efficiency
Even without direct monetary payoff, many farmers who adopt climate-smart practices reap rewards in improved efficiency and productivity.
"When you look at climate-smart, you also have to look at what's farm smart," Sebright says. She suggests that farmers choose practices that benefit their farms, not just the climate.
A farmer might decide to put a cover and flare system on a manure pit, not only because it reduces methane emissions but also because it keeps rainwater out of the pit and reduces the number of times each year the pit must be emptied.
Andy Bollinger of Meadow Spring Farm in Lancaster County has been running a manure separator since 2009. The liquid fertilizes his fields, and a portion of the solids becomes bedding for his cows.
He estimates the system saves him at least $20,000 a year in bedding costs.
"We put a fresh coating of it onto the stalls that our cows lay in every day and scrape the old stuff out," says Bollinger, who is also the vice president of the Professional Dairy Managers of Pennsylvania. "It seems to work quite well, and it saves us from buying other bedding products."
No-till farming is also a cost saver because it reduces field passes with equipment, says James Thiele of Thiele Dairy Farm in Cabot, which has been 100% no-till for at least six years. The practice saves him money on fuel and herbicides.
"You're saving your environment, and you're also saving green," he says.
But Thiele questions whether some other climate-smart practices like methane digesters would be practical for his farm, which has 75 to 80 cows.
"I don't know if it'd be worth it for somebody as small as I am," he says.
"I think over the next few years, we'll rapidly see (climate-smart) tools become more available, and we'll see more organizations like DFA talking to our small to mid-sized farmers to make sure they understand they've got a place in this, they can benefit from it, and the practices and tools are affordable to them as well," Klippenstein says.
Weighing Climate-Smart
Many dairy farmers wonder whether some of the practices championed as climate-smart will really support their businesses.
Donny Bartch of Merrimart Farms in Loysville has adopted environmental practices from cover cropping to a manure management plan.
"I want to protect the environment. I want to keep my nutrients here on the farm and be sustainable for another five generations," Bartch says. "But we have to make sure that we're making the right decisions to keep the business going. And to do some of these (climate-smart) practices, the only way they pencil out is to have those subsidies."
There is also frustration with a system that rewards climate-smart improvements made today without acknowledging the contributions of farmers who were climate-smart before anyone put a name on it.
"You come around and want to start rewarding people for doing these things. You really need to start with the ones that have been doing it for a long time, but that's really not what happens," says Jim Harbach of Schrack Farms in Loganton, whose farm has been no-till for 50 years.
Climate-smart grant money and carbon credits are typically awarded for the implementation of new practices.
"It's just the unfortunate way that all of the policies and regulations were written," Sebright says. "What I would say is, if you do a climate-smart plan, maybe there are practices or things you can do to enhance or support or take what you're doing a step further."
Scientific Measurements on Real Farms
Some dairy farmers also want to know more about how climate-smart practices will affect their farms before jumping in.
Steve Paxton remembers participating in a government program to improve timber over 50 years ago on his family dairy, Irishtown Acres in Grove City. His family members were paid to climb up into their white pines and saw off many of the bottom branches.
The goal was to create a cleaner log. Instead, more sunlight shown through, which caused grape vines to climb up and topple the trees.
"The bottom line is, there was research done, it looked good, but it hadn't had enough time to follow through and see just really what the end results would be," Paxton says.
When Paxton sees estimates of how some practices might reduce greenhouse gases emitted from cows, he wonders how much of that research has been tested on actual dairies.
"I think some of it now is just kind of a textbook estimate of what's happening," he says.
More meaningful data is needed to show how climate-smart practices reduce greenhouse gases on individual dairies, Sebright says.
As part of the CARAT program, Penn State researchers planned to place greenhouse gas sensors on a dozen dairies and test how much greenhouse gas production falls as farmers experiment with different practices. The researchers intended to then use that data to build models that predict how those practices may affect emissions on other farms. They will still measure emissions this spring on one farm that is experimenting with a new approach for spreading manure in fields of feed crops.
"The real goal of (CARAT) is to have research that says, if you put a cover and flare (manure storage system) on a 500-cow dairy, this is how greenhouse gas emissions will change," Sebright says. "Or if you use Bovaer on a 90-cow herd, here's how this will affect greenhouse gas emissions."
Martin of Mountain View Holsteins has his own personal beliefs about where a dairy farmer's responsibilities to the planet begin and end. But from a business perspective, he feels compelled to adopt climate-smart practices because he expects the industry will eventually require them.
"Climate concerns are coming whether I'd like it or not," he says. "So my thought is, I might as well get started on it while there's funding to do it."
Carolyn Beans wrote this article for Lancaster Farming.
get more stories like this via email
Oregon's new state budget cuts funding for programs intended to protect residents from extreme weather and make renewable energy more accessible.
Climate justice advocates said it is a major setback after years of progressive climate policies.
Ben Brint, senior climate program director for the Oregon Environmental Council, is disappointed to lose funding for the Community Renewable Energy Grant Program, which supports a variety of projects tailored to communities, including microgrids and solar storage.
"We felt legislators didn't fund climate resilience programs while fires are raging, people's houses are burning down and the state has already experienced record heat waves in June," Brint pointed out. "Legislators don't see we are in an actual climate emergency and chose inaction."
Brint said the grant program aimed to help low-income, rural and communities of color, those most impacted by climate disasters. Lawmakers attributed the cuts to budget shortfalls and uncertainty over federal funding.
Joel Iboa, executive director of the Oregon Just Transition Alliance, said the Community Resilience Hub program, which creates networks as well as physical places to protect people from extreme cold, heat and smoke also lost funding this session. He argued the hubs are effective because communities design them to meet their unique needs.
"Whether it be a place to plug in your phone or a place to go get diapers or get an air conditioner or whatever your community may need," Iboa outlined. "Depending on what's going on."
A heat pump program for rental housing, aimed at making energy-efficient heating and cooling more affordable, was also cut this session.
Brint added he realizes legislators have to make tough decisions about how to fund health care and housing but emphasized climate change is connected to those issues.
"When we're talking about heat pumps or the C-REP program, we're talking about people's health and livelihoods and saving lives in the face of climate fueled disaster," Brint stressed.
Brint added since climate change is not going away, the movement to push for climate resilience will not either.
get more stories like this via email