skip to main content
skip to newscasts

Wednesday, December 4, 2024

Public News Service Logo
facebook instagram linkedin reddit youtube twitter
view newscast page
play newscast audioPlay

Trump considers replacing Pete Hegseth, his embattled defense secretary pick, with Ron DeSantis; More support needed for over half-million WI family caregivers; Free, unbiased health insurance help available for Ohioans; Fungi help MS farmers unlock 'secrets' of healthy soil.

view newscast page
play newscast audioPlay

GOP Senators voice reservations about Kash Patel, Trump's FBI pick. President Biden continues to face scrutiny over pardoning his son. And GOP House members gear up for tough budget fights, possibly targeting important programs.

view newscast page
play newscast audioPlay

Residents in Colorado's rural communities face challenges to recycling, climate change and Oregon's megadrought are worrying firefighters, and a farm advocacy group says corporate greed is behind high food prices in Montana.

Fungi help MS farmers unlock 'secrets' of healthy soil

play audio
Play

Wednesday, December 4, 2024   

By Grey Moran for Civil Eats.
Broadcast version by Danielle Smith for Mississippi News Connection reporting for the Solutions Journalism Network-Public News Service Collaboration


Timothy Robb peers into a microscope to reveal the underground realm of the living and dying within a fistful of soil. On the glass slide, he sees clumps of golden-brown minerals and organic matter particles, like pebbled splotches of ink. Nearly everything else in the landscape is a microbe, a motley crew of roving shapes, preparing to eat or be eaten. Hairy orbs of protozoa glide around in search of snacks in the flecks of bacteria scattered all around. A nematode, a microscopic worm, thrashes through the scene in a hurry. A tubular strand of fungi stands still, perhaps absorbing the dust of dead plants.

"This is called shadow microscopy," says Robb, the co-owner of Compostella Farm in southern Mississippi, bringing the microorganisms into focus. It's a way of viewing living specimens under an oblique light, so they appear backlit and magnified, like a shadow box theater. Just prior to this, he diluted the sample in water and shook it, like a "hurricane or earthquake, any biblical catastrophe motion for that soil." This broke apart the soil's structure so he could see everything holding it together, like the dark brown curl of fungi.

"This is what a really good, healthy fungi strand looks like," he says. Its uniform, segmented structure, thickness, and color are often good signs, though he adds that it's not a hard and fast rule, just clues that this might be an architect of healthy soil.

As a vegetable farmer, Robb is mostly in the business of life. But his interest in building healthy soil led him down into this shadowy world of decay, where microbes shuffle carbon and nutrients in an endless cycle that sustains all life on Earth. This world appears chaotic at first glance, but Robb insists that it is elegant. An orderly marketplace, really. He's been working to understand and strengthen this underground economy to replenish his soil.

Researchers have increasingly recognized how essential fungi are to sequestering carbon in the soil and some have come to appreciate the outsized role they play in supporting crop health, mitigating climate change, and even sheltering crops from disease. As fungi's vast benefits come to light, more farmers are tapping into this vital network, learning how to work with beneficial fungi to encourage its growth in the soil, swapping tilling for microscopes.

This growing interest in fungal networks on farms quietly challenges the underpinnings of U.S. agriculture. The prevailing model involves taking care of the crop's nutritional needs with chemicals, bumping up the nitrogen, phosphorus, and potassium in an effort to maximize the yield of the crop. Farm ecosystems are controlled with herbicides that kill weeds and fungicides that kill the fungi in the soil. Common practices, like tilling the soil, disturb the fungal networks and then deepen the dependence on chemical inputs.

"We're reliant on these cheap inputs that are no longer cheap," says soil ecologist Adam Cobb, whose research focuses on mycorrhizal fungi. He notes that farmers are then subject to the whims of a global market, which tends to skyrocket in price during geopolitical conflicts.

These chemical-based practices degrade the soil over time, stripping it of its ability to cycle carbon and nutrients without its supportive network of decomposers. But working to both protect and encourage fungi on farms is a way to reverse course. Robb sees his work of coaxing beneficial fungi back into the soil, which he largely learned from an online program called the Soil Food Web School, as both a challenge to mainstream agriculture and as a way forward to restore agricultural soils.

"It's a criticism of how agriculture is currently conducted," says Robb. "And it's a methodology of introducing the microorganisms that are absent from the soil-the chain of organisms that release different minerals from rocks, clay, or silt particles in the soil."

The Nutrient-for-Carbon Exchange

Fungi are effectively merchants of carbon. In the soil, they give plants the water and nutrients they need, while the plants provide fungi with carbohydrates (i.e., carbon) from photosynthesis. Fungi can act like a second set of roots, extending the plant's ability to draw in water and nutrients.

Mycorrhizal fungi, which encompass thousands of species, can form large, underground networks, connected by branching filaments called hyphae, threading through the soil in every direction. One type of this fungi, known as arbuscular mycorrhizal, attaches directly to the cell membranes of a plant's root, facilitating a smooth delivery. Other microbes in the soil, like protozoa and nematodes, participate in this cycling, too, digesting fungi and bacteria to release their nutrients in a more available form to plants.

"The microbes engineered habitats around the plant roots that would be high in organic matter and make it more efficient for them to be able to obtain water and nutrients that they could then-in this carbon economy-essentially sell it to the plant," says Kris Nichols, a leading researcher on soil microbiology. "It's really an economic relationship."

This relationship becomes especially interesting when business is booming-when the plants are delivering a lot of carbon into the soil that is used to build larger and larger fungal networks while distributing carbon across the soil profile. The carbon accumulates in the soil in many forms, from fungal cell walls to soil aggregates, or pellets of very alive soil that Nichols describes as "little microbial towns," like economic hubs.

When these microbial communities develop, mycorrhizal fungi use their hard-earned carbon to build a protective coating around them, sheltering them from disturbances while more stably storing carbon. To the naked eye, these pellets look like crumbs in the soil.

The accumulation of carbon in the soil effectively slows the carbon cycle, causing carbon to linger in the ground for a longer period of time rather than quickly releasing into the atmosphere, where it takes the form of carbon dioxide, a greenhouse gas driving climate change. That's the goal of what's been popularly described as "climate-friendly farming," or regenerative agriculture: keeping as much carbon in the soil for as long as possible, in part by keeping these underground networks undisturbed.

And increasingly, fungi have gained scientific recognition for their essential role in slowing this life-ending and -giving cycle. A recent study found that the world's mycorrhizal fungi store the equivalent of a third of fossil-fuel emissions.

How Farmers Can Tap Into Fungal Networks

Peering through the microscope, Robb's task is relatively simple: He counts and measures each microbe-fungi, nematodes, protozoa, and bacteria-to understand the microbial relationships in the soil and gauge its health. He also looks for the indicators of beneficial fungi and a diversity of microbes: different colors, lengths, and shapes.

There's no shortage of bacteria on the slide. It's common for agricultural soils to be dominated by bacteria, which Robb is hoping to shift on his farm, building a more balanced ratio of fungi to bacteria in his soil. It's not that bacteria should be scorned; they too are important decomposers that collaborate with fungi. But it's hard to beat fungi at its game, rightfully a kingdom of its own. Fungi, more complex organisms, are more efficient at storing carbon across vast networks in the soil and more effective at delivering nutrients for certain plants.

The ratio of fungi to bacteria depends on the plants, explains Robb. He mostly grows salad greens across 3 acres of farmland. For his bok choy, mustards, and kale, he's aiming for a 1-to-3 ratio of fungi to bacteria, but his lettuce requires a bit more fungi, closer to 1-to-1. He steeps the compost like a tea, extracting the microorganisms in water, and then runs it through his irrigation system.

"You're introducing millions of fungi and bacteria species to the soil. And that's as far as the management really needs to go, because once the plant gets established, then it's controlling [the relationship with the microbes]," says Robb. He's essentially just giving a plant options, a pool of microbes at its service.

In addition to applying compost tea, Robb supports fungal life by creating mulch from wood chips, which the fungi help decompose.

Robb shows me a pile of wood chips softening in the sun. It's just 3 months old, but already threaded with fine white hairs of saprophytic fungi, resembling a cobweb. "When you can see it visually like this, what you're actually seeing are like thousands of strands wrapped around each other," says Robb, given that hypha are just several microns in size.

Before planting, he'll also coat his seeds in a mycorrhizal treatment, a powder of spores. This inoculates this critical, network-building fungi in the soil. So as soon as the plant germinates, the fungi will be available to swap nutrients for carbon. Periodically, he'll feed the fungi, adding liquid kelp, fish hydrolysate, and humic and fulvic acids to encourage its growth.

Every month or so, Robb peers at a soil sample under the microscope, assessing his progress. It has been about a year since he bought his first microscope and began surveying the local microbes. Most of his soil still isn't where he'd like it to be, still dominated by bacteria, but it's steadily improving. He essentially started from scratch on sandy soil that couldn't hold onto much water or nutrients.

The most visible marker of improvement, at least to the naked eye, might be the crops themselves. A couple years ago, he observed "a precipitous decline in the quality" of his vegetables. They were yellowing and stunted. His lettuce was drooping. Disease was a regular occurrence. This prompted him to look into how to build soil that could hold onto more nutrients, which led him to fungi.

So far, his focus on improving decomposition has improved the health of his crops-now, rows of mostly bright green, leafing, upright crops emerge from dark brown, lush soil.

A Symbiotic Relationship That Predates Humans

The critical relationship between fungi and plants dates back 470 million years, when aquatic plants first transitioned to land. It was a barren landscape, without trees or soil, just endless sand, silt, and clay.

"We had a very mineral land base, but we didn't have soil," said microbiologist Kris Nichols. As plants began washing up on shore, it's thought that mycorrhizal fungi helped them siphon nutrients and water, providing what they needed to move to land, in a symbiotic relationship for the ages.

"We know that this relationship existed," said Nichols. "We have the genetic markers and we have the fossilized plant roots to be able to see, structurally, that it has been this same type of relationship for hundreds of millions of years."

It has taken a while for the role of fungi in supporting plants and soil health to gain mainstream scientific recognition, however. Elaine Ingham, a pioneer in the field of soil microbiology, recalls facing pushback in the early 1980s when she proposed researching the role of soil microorganisms for her dissertation at Colorado State University. She met with her professors to propose her field of inquiry, only to be sternly dismissed.

"They'd look me in the eye and say, 'You don't know what you're talking about. Bacteria and fungi in the soil-they're just there. They don't do anything,'" she recalls. "All of them agreed that I was endangering my ability to get a job at the other end of my research project."

But Ingham was undeterred. "I wanted to understand what bacteria and fungi in the soil were there for," she says. "In all the literature I looked at, you couldn't find anything about what these organisms in the soil actually do." With the blessing of her advisor, she was allowed to pursue a dissertation project, along with her husband Russell Ingham, studying how soil fungi, bacteria, and nematodes interact with plants.

It was the start of her life's work to help peel back the layers of the mysterious world of microbes within the soil. To date, the vast majority of the millions of fungi species on Earth remain unknown by scientists, but it's now abundantly clear that many fungi play a critical role in soil health. Ingram, who grew up on a farm, now works with farmers to reintroduce soil fungi through the Soil Food Web School.

Robb came to learn how to work with fungi on his farm when he stumbled upon the school by chance in a footnote of a book. He attended the program without a background in science, but it didn't take him long to feel comfortable behind a microscope. It was an "aha moment" when he realized his soil was depleted of fungi and other microbes-with this, he had the clarity of a diagnosis.

The Vast, Untapped Potential of Fungi

While the Soil Food Web School is one approach, there are practically infinite ways to work with beneficial fungi and microorganisms on farms. Many practices associated with regenerative agriculture and long-standing Indigenous methods encourage fungi. Even if not measured with a microscope, there are signs of fungi at work-like dark, spongious soil.

"We never leave our soil bare. It is always covered with straw, leaf mold, or wood chips," says Leah Penniman, the co-founder of Soul Fire Farm in upstate New York. "We like to think of these wood chips as encouraging the fungi from the native forest around to come into our fields and partner with our orchards and with our crops."

In 2006, when she started Soul Fire Farm, the soil was very degraded and the organic matter-which includes soil carbon-was only at 3 percent. But they've since increased it to 10 percent to 12 percent in some areas. "That has been through a partnership with fungi," Penniman says. Slowly but surely, fungi have emerged from the forest, building carbon in the soil.

Robb also thinks of the forest on the outskirts of his fields. The trees have a relationship with mycorrhizal fungi and microbes that take care of all their needs, without any human intervention. "Those are nitrogen-rich plants, and nobody's applying fertilizer," he says.

He currently adds organic nitrogen to his farm, but hopes to add less and less, allowing the fungi and microbes to increasingly take over in tending to his crops.


Grey Moran wrote this article for Civil Eats.


get more stories like this via email

more stories
Research on the effects of a school voucher program in Louisiana show academic performance decreased among kids who use vouchers to attend private schools. (Adobe Stock)

Social Issues

play sound

In this week's 2026 budget address, Gov. Kristi Noem proposed establishing education savings accounts for K-12 students in South Dakota. Opponents …


Environment

play sound

The most current study from the Environmental Protection Agency estimated more than 143 million Americans are at risk of drinking water tainted with P…

Social Issues

play sound

Maryland has one of the highest percentages in the nation of people in prison who began serving time when they were juveniles. A new report from …


The unpaid care provided by more than 580,000 Wisconsin caregivers is valued at $9.2 billion, according to AARP. (Adobe Stock)

Social Issues

play sound

More than 580,000 Wisconsinites are unpaid family caregivers and they serve as the backbone of the state's long-term care system, and one …

Environment

play sound

A county high in the Colorado Rockies is working to include its underserved residents in plans to reduce greenhouse gas emissions, the primary driver …

State officials say in 2023, Minnesota's workplace injury and illness rate fell to an all-time low. (Freepik)

Social Issues

play sound

There is promising news at the national level and in Minnesota in trying to lower workplace injuries and illnesses. A key labor organization is happy …

Social Issues

play sound

By Dakarai Turner for WISH-TV.Broadcast version by Joe Ulery for Indiana News Service reporting for the WISH-TV-Free Press Indiana-Public News Service…

Health and Wellness

play sound

A new report found New York hospitals are in a precarious financial state. The New York State Hospitals Fiscal Survey Report showed statewide …

 

Phone: 303.448.9105 Toll Free: 888.891.9416 Fax: 208.247.1830 Your trusted member- and audience-supported news source since 1996 Copyright © 2021