New nuclear power options are getting a lot of attention but analysts said the unproven options could distract from readily available renewable energy options.
Big Tech companies with growing energy demands from technology, like artificial intelligence, have recently announced support for new nuclear efforts, including Amazon's support for a plan in Washington state. The plans involve technology called small modular reactors, which are smaller than typical nuclear reactors.
Dennis Wamsted, energy analyst at the Institute for Energy Economics and Financial Analysis, said the technology likely would not come online until 2030 or later in the U.S.
"It's a great marketing tool. There's no actual there, there yet," Wamsted asserted. "There are no operating small modular reactors in the United States or in Europe. There's one or two in Russia and one in China."
Wamsted recently analyzed what he called the hype surrounding small modular reactors. He noted the projects may be distant energy solutions and distract from solar, wind and geothermal plants, which are already proven to work.
Wamsted acknowledged tech companies should be applauded for their clean energy goals, which are among the most aggressive of any industry. But when it comes to small modular reactors, there are a lot of hurdles to starting up, including regulatory barriers.
"The safety license is given to you by the Nuclear Regulatory Commission, which has a process," Wamsted explained. "It is a relatively time-consuming process. It may be more time-consuming for companies like X Energy because their reactors have never been licensed before."
Wamsted added while we could wait a decade for small modular reactors to produce energy for the first time, there are solar projects, for instance, that have gone from announcement to commercial operation in two years.
"Focus on the availability now of renewables and continue to fund the SMRs," Wamsted urged. "But be up-front about the fact that they're not a solution for the rapid demand growth that we're going through in the United States right now."
Disclosure: The Institute for Energy Economics and Financial Analysis contributes to our fund for reporting on Budget Policy and Priorities, Energy Policy, Environment, and Urban Planning/Transportation. If you would like to help support news in the public interest,
click here.
get more stories like this via email
By Seth Millstein for Sentient Climate.
Broadcast version by Edwin J. Viera for Connecticut News Service reporting for the Sentient-Public News Service Collaboration
We talk a lot about carbon emissions in the context of climate change, but some of the most dangerous emissions aren't carbon at all. They're methane - a colorless, odorless glass that's primarily produced biologically and warms the planet much faster than carbon dioxide. The Biden administration took some good first steps to reduce America's methane emissions - but will President-elect Donald Trump build upon these steps when he assumes office, or claw back the progress that's been made?
Understanding Methane Emissions
Methane is one of the three main greenhouse gasses, along with carbon dioxide and nitrous oxide. The Earth and its various ecosystems produce methane naturally; freshwater lakes, wetlands and permafrost are the primary natural sources of methane. It's also the main component of natural gas.
However, a 2021 United Nations report found that currently, roughly 60 percent of methane emissions are anthropogenic, or the result of human activity. Agriculture produces more methane than any other sector around the world, and around 90 percent of anthropogenic methane emissions come from one of three sources: agriculture, fossil fuels and waste.
The line between anthropogenic and naturogenic (naturally-occurring) methane emissions can be blurry. For instance, a major source of methane is cow burps (and, to a lesser extent, farts). While cows are obviously "naturally-occurring," animal agriculture is not, and neither is the amount of cows we've brought into existence. The sheer amount of methane produced by cows is the result of our domestication of them, not any sort of natural process.
Similarly, methane is the main ingredient in natural gas, and natural gas existed long before humans came around. But it's the extraction of natural gas that actually causes this methane to enter the atmosphere, and natural gas extraction is a human activity.
Semantics aside, one thing is certain: There's a lot more methane in the atmosphere than there would have been had humans never existed. And that's not good.
Why Is Methane a Problem?
Like other greenhouse gasses, methane contributes to climate change by warming the atmosphere and the planet. But it works a bit differently than carbon dioxide, the most common greenhouse gas.
Carbon dioxide makes up almost 80 percent of all greenhouse emissions, whereas methane constitutes just over 11 percent. In addition, methane dissipates rather quickly; it only sticks around in the atmosphere for around a decade, whereas carbon dioxide can linger for up to 1,000 years.
This might have you thinking that methane isn't that big of a deal, at least insofar as greenhouse gasses go. The problem is that methane traps much, much more heat than carbon dioxide - so much so that, over a 100 year period, methane has 27-30 times the global warming potential of carbon dioxide. Over the course of 20 years, it has 80 times the warming potential.
In addition to warming the environment, methane also makes the air dangerous to breathe, because when sunlight interacts with methane, it forms a pollutant called tropospheric ozone. Although tropospheric ozone only stays in the air for a few weeks at most, it can be fatal; it's estimated that up to a million people die every year from respiratory diseases caused by ozone pollution, and methane is a major contributor to this.
How Do Farms Contribute to Methane Emissions?
Around one-third of all anthropogenic methane emissions come from livestock. There are two main reasons for this.
First, there are the burps. A number of animals produce methane as a natural byproduct of their digestive systems; these animals are known as ruminants, and they include not only cows but also sheep, goats, yaks and more. When ruminants burp, they release methane into the air. These are called enteric methane emissions.
The other main source of livestock-related methane emissions is the animals' manure - or, to be more precise, the manner in which farmers store the animals' manure.
Manure management is a significant component of livestock farming. One of the more common ways of storing manure is to put it in large lagoons or pits; this prevents it from leaking into nearby soil and waterways, and also allows farms to more accurately monitor and track their farms' manure output.
Over time, however, the top layer of manure in the lagoon hardens, which prevents oxygen from reaching the manure below. And this is a problem, because when manure is placed in an oxygen-free environment, the microorganisms that produce methane thrive and proliferate, thus increasing its methane emissions. That's exactly what happens in manure pits.
These two factors - enteric emissions and manure (mis)management - account for 80 percent of agriculture-related methane emissions. The other 20 percent comes from rice farming. Rice is a semi-aquatic plant that requires a layer of standing water to grow; this water prevents oxygen from reaching the microbes in the soil, allowing them to reproduce and create methane in a manner similar to manure in a lagoon.
The problem of livestock-related methane emissions is exacerbated by the fact that global meat production has been on the rise for the last 60 years, on both an absolute and per-capita level. This makes reducing these missions all the more important - but how?
How Can Farmers Reduce Their Methane Emissions?
A number of solutions have been proposed, and in some cases implemented, for reducing methane emissions.
Many of these involve new or emerging technologies. There are feed additives that reduce the amount of enteric methane production in ruminants' stomachs, for instance, and manure aeration systems that allow oxygen to flow into stored manure on farms. One company is even developing a methane-trapping mask for cattle to wear while grazing.
Other methane reduction strategies are decidedly more low-tech, such as selectively breeding animals to produce less methane. Simply making livestock farms more efficient on the whole can also have an impact, as this results in increased output with no corresponding increase in methane emissions.
All of these solutions, however, face obstacles. Fernanda Ferreira, Director for Agriculture Methane at Clean Air Task Force, tells Sentient that one of the biggest challenges in methane mitigation is the simple fact that production facilities and logistical operations vary wildly from farm to farm.
"Let's look at the U.S.," Ferreira says. "When you think about goats, sheep, beef and dairy farmers, you have a little over a million farmers. So we're talking about one million different ways of managing these animals. Even if you zoom in into one specific region - let's say the West, or a state like California - there will be variation."
This variation, Ferreira says, complicates efforts to implement methane mitigation technologies on a wide scale, because every farm is a unique operation with slightly different needs, capabilities and restrictions.
"When you zoom in, you have a lot of variation of how farmers handle these animals," Ferreira says. "And this is directly linked to the challenge of adopting [methane reduction] technologies."
Another major challenge is cost. Many of these solutions are expensive, and the cost of implementing them falls on the farmers themselves. But while methane reduction benefits all of humanity in the long run, it doesn't offer farmers any benefit in the short run. As such, farmers largely aren't incentivized to adopt these technologies.
Lastly, there's the simple fact that a lot of this technology is still in the research and development phase. As of this writing, only one synthetic methane-reducing feed additive has been approved by the FDA, and that approval only came six months ago. Other proposed additives are prohibitively expensive, not very effective or come with other drawbacks. The methane-trapping cow mask also has several logistical issues, and has been criticized as a potential form of greenwashing.
What Has President Biden Done About Methane?
In 2021, the Biden administration unveiled the U.S. Methane Emissions Action Plan, a 20-page document with various initiatives and proposals for reducing U.S. methane emissions. They include incentives for farmers to reduce their methane emissions, new regulations aimed at doing the same, and the formation of an interagency task force to collect methane and use it for "on-farm renewable activities."
"The U.S. Methane Emissions Reduction Action Plan provides the framework for the work on agriculture methane emissions," Ferreira says. "The most important outcome that it supports is the deployment of climate smart-initiatives, such as the use of methane-reducing feed additives and the implementation, more broadly, of manure management practices."
In 2023, the Biden administration announced The National Strategy to Advance an Integrated U.S. Greenhouse Gas Measurement, Monitoring, and Information System (yes, that's the official name). This set of policies is geared at improving the tracking, monitoring and reporting of greenhouse emissions, both inside and outside of the government.
These two action plans, Ferreira says, are important first steps in tackling the methane problem-head on. In addition to all of this, the Inflation Reduction Act, passed in 2022, contained funding for a selection of "climate-smart" agricultural practices, including some aimed at reducing methane emissions from farms.
The Inflation Reduction Act also expanded the EPA's authority to regulate methane emissions, and created the Methane Emissions Reduction Program for the purpose of doing so. The Biden administration allocated $1 billion to this program in 2023, and in December, introduced new limits on methane emissions via the EPA.
However, these initiatives only apply to the oil and gas industries, so they won't have any effect on agricultural methane emissions.
What Will Trump Do About Methane?
Methane emissions weren't a central focus of the 2024 campaign, or even a tertiary one, and President-elect Trump made no policy pledges regarding methane. However, actions that he took as president during his first term strongly suggest that he'll seek to undo the Biden administration's progress on methane reduction.
During his time in office, Trump withdrew or weakened a number of federal regulations aimed at tracking and reducing methane emissions, including Obama-era rules that required oil and gas companies to monitor and fix methane leaks at their facilities and take steps to reduce methane emissions on public and tribal lands.
After Trump's 2024 victory, the Biden administration finalized a rule that fines oil and gas companies for their methane emissions, and there's been widespread speculation that Trump will scrap this rule once he assumes office.
Trump, who once said that climate change was a hoax perpetrated by China to make U.S. manufacturing less competitive, withdrew or weakened over 100 environmental regulations during his first term. Nothing he's said or done indicates that he's changed his tune on climate matters since then, so it seems likely that he'll continue rolling back environmental protections, including those aimed at reducing methane emissions.
While this would be unfortunate, Trump is just one person, and America is just one country. There are plenty of other leaders around the world, both in the private and public sectors, making efforts to curb methane emissions.
Canada, Mexico, Japan and several other countries have made significant investments in methane reduction as part of the Global Methane Pledge, for instance. In addition, almost 100 mayors around the world have pledged to reduce their cities' emissions in accordance with the Paris Agreement, which Trump withdrew the U.S. from. Meanwhile, Bill Gates has invested millions in a feed additive company aimed at reducing enteric methane production in livestock.
There are, in other words, plenty of opportunities for global action on methane that don't involve the U.S. president.
The Bottom Line
Reducing methane emissions is no easy task; there are technological, financial, logistical and even dietary hurdles. But given methane's rapid-fire warming potential, overcoming these obstacles isn't optional, but necessary.
Our planet won't remain liveable for future generations without a sharp reduction in methane emission. The Biden administration took some good first steps in bringing about such a reduction, and hopefully, more steps from other world leaders will follow, even if the Trump administration rolls back progress on the issue.
Seth Millstein wrote this article for Sentient.
get more stories like this via email